
High Profile Diseases - Induced Pluripotent Stem Cells for Regenerative Medicine
“High Profile Diseases” are written by individual NPRC Core Scientists who are experts in the specific subject of each article. Before publication on the website, each article is reviewed by representatives of all seven NPRCs.
Jordana Lenon (WNPRC)
The National Primate Research Centers have been responsible for groundbreaking advances in pluripotent stem cell research since 1995. (See timeline.) Scientists use pluripotent stem cells as a basic research tool to understand the human body, for pharmaceutical development and drug toxicity testing, to screen for environmental compounds that may be harmful to humans, and for preclinical tissue and organ transplant studies. Embryonic stem cells come from leftover lab-fertilized embryos donated by patients at in vitro fertilization clinics. Induced pluripotent stem cells (iPS cells) are genetically reprogrammed skin, fat or other mature cells that act like embryonic stem cells but can be derived from an individual’s own cells to study and potentially treat a particular genetic or degenerative disease in that individual.
As pluripotent stem cell research moves from bench to bedside, large animals such as nonhuman primates, pigs and sheep are becoming more important for preclinical studies. For example, researchers are using heart, bone, and retinal cells grown from both ES and iPS cells to regenerate healthy cardiac tissue after myocardial infarction, lost bone and cartilage due to joint injury or degeneration, and retinal cells to restore vision in patients with juvenile and age-related macular degeneration.
Pluripotent stem cells can also be used to grow mesenchymal stem cells, which are normally found in bone marrow but are difficult to extract in large quantities for basic and preclinical research. Clinicians hope to grow large numbers of mesenchymal stem cells from a patient’s own iPS cells, to regenerate bone marrow for cancer treatment: There are not enough matched bone marrow donors and even autologous (self) bone marrow extraction, cryopreservation and transplant after cancer treatment is a risky process and not always successful. Mesenchymal stem cells and related types of stem cells are showing potential for therapeutic, protective and regenerative benefits in other tissues and organs as well.
NPRC scientists are also using iPS cells to grow dopaminergic neurons for researching Parkinson’s disease therapies, pancreatic beta cells for diabetes studies, and motor neurons to study ALS. One NPRC scientist is interested in using iPS cells as a source of cells to produce oocytes for fertility treatment in cancer survivors who suffer from ovarian insufficiency. Nonhuman primate models will be the critical stepping stone between many of these basic stem cell research studies and human treatments.
Click image to enlarge.
Article References
Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Becker RA, Hearn JP. Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7844-8.PMID: 7544005. PMC41242.
Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science. 1998 Nov 6;282(5391):1145-7. Erratum in: Science 1998 Dec 4;282(5395):1827. PMID: 9804556. PMCID unavailable.
Zhang SC, Wernig M, Duncan ID, Brüstle O, Thomson JA. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol. 2001 Dec;19(12):1129-33. PMID: 11731781. PMCID unavailable.
Zwaka TP, Thomson JA. Homologous recombination in human embryonic stem cells. Nat Biotechnol. 2003 Mar;21(3):319-21. PMID: 12577066. PMCID unavailable.
Gerami-Naini B1, Dovzhenko OV, Durning M, Wegner FH, Thomson JA, Golos TG. Trophoblast differentiation in embryoid bodies derived from human embryonic stem cells. Endocrinology. 2004 Apr;145(4):1517-24. PMID:14684604. PMCID unavailable.
Vodyanik MA, Bork JA, Thomson JA, Slukvin II. Human embryonic stem cell-derived CD34+ cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood. 2005 Jan 15;105(2):617-26. PMID:15374881. PMCID unavailable.
Ludwig TE, Levenstein ME, Jones JM, Berggren WT, Mitchen ER, Frane JL, Crandall LJ, Daigh CA, Conard KR, Piekarczyk MS, Llanas RA, Thomson JA. Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol. 2006 Feb;24(2):185-7. PMID:16388305. PMC unavailable.
Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007 Dec 21;318(5858):1917-20. PMID: 18029452. PMCID unavailable.
Choi KD, Yu J, Smuga-Otto K, Salvagiotto G, Rehrauer W, Vodyanik M, Thomson J, Slukvin I . Hematopoietic and Endothelial Differentiation of Human Induced Pluripotent Stem Cells. Stem Cells. 2009 Mar 2;27(3):559-567. PMID: 19259936. PMC2931800.
Tarantal AF, Lee CC, Batchelder CA, Christensen JE, Prater D, Cherry SR. Radiolabeling and in vivo imaging of transplanted renal lineages differentiated from human embryonic stem cells in fetal rhesus monkeys. Mol Imaging Biol. 2012 Apr;14(2):197-204. PMID: 21479709. PMC4224287.
Shi Q, Hodara V, Simerly CR, Schatten GP, VandeBerg JL. Ex vivo reconstitution of arterial endothelium by embryonic stem cell-derived endothelial progenitorcells in baboons. Stem Cells Dev. 2013 Feb 15;22(4):631-42. PMID: 22931470. PMC3564485.
Emborg ME, Liu Y, Xi J, Zhang X, Yin Y, Lu J, Joers V, Swanson C, Holden JE, Zhang SC. Induced pluripotent stem cell-derived neural cells survive and mature in the nonhuman primate brain. Cell Rep. 2013 Mar 28;3(3):646-50. PMID: 23499447. PMC3633566
Tachibana M, Amato P, Sparman M, Gutierrez NM, Tippner-Hedges R, Ma H, Kang E, Fulati A, Lee HS, Sritanaudomchai H, Masterson K, Larson J, Eaton D, Sadler-Fredd K, Battaglia D, Lee D, Wu D, Jensen J, Patton P, Gokhale S, Stouffer RL, Wolf D, Mitalipov S. Human embryonic stem cells derived by somatic cell nuclear transfer. Cell. 2013 Jun 6;153(6):1228-38. PMID: 23683578. PMC3772789.
Fox IJ, Daley GQ, Goldman SA, Huard J, Kamp TJ, Trucco M. Stem cell therapy. Use of differentiated pluripotent stem cells as replacement therapy for treating disease. Science. 2014 Aug 22;345(6199):1247391. Review. PMID25146295. PMC4329726.
Salih SM, Ringelstetter AK, Elsarrag MZ, Abbott DH, Roti EC. Dexrazoxane abrogates acute doxorubicin toxicity in marmoset ovary. Biol Reprod. 2015 Mar;92(3):73. PMID: 25609833. PMC4367967.
Pellett S, Schwartz MP, Tepp WH, Josephson R, Scherf JM, Pier CL, Thomson JA, Murphy WL, Johnson EA. Human Induced Pluripotent Stem Cell Derived Neuronal CellsCultured on Chemically-Defined Hydrogels for Sensitive In Vitro Detection of Botulinum Neurotoxin. Sci Rep. 2015 Sep 28;5:14566. PMID: 26411797. PMC4585966.
Recent NPRC Publications
2020
Vermilyea SC, Babinski A, Tran N, To S, Guthrie S, Kluss JH, Schmidt JK, Wiepz GJ, Meyer MG, Murphy ME, Cookson MR, Emborg ME, Golos TG
In Vitro CRISPR/Cas9-Directed Gene Editing to Model LRRK2 G2019S Parkinson'sDisease in Common Marmosets.
Sci Rep. 2020 Feb 26;10(1):3447. doi: 10.1038/s41598-020-60273-2. 2020.
2019
Brok-Volchanskaya VS, Bennin DA, Suknuntha K, Klemm LC, Huttenlocher A, Slukvin I
Effective and Rapid Generation of Functional Neutrophils from Induced PluripotentStem Cells Using ETV2-Modified mRNA.
Stem Cell Reports. 2019 Nov 5. pii: S2213-6711(19)30368-6. doi:10.1016/j.stemcr.2019.10.007. 2019.
Cho IK, Hunter CE, Ye S, Pongos AL, Chan AWS
Combination of stem cell and gene therapy ameliorates symptoms in Huntington'sdisease mice.
NPJ Regen Med. 2019 Mar 26;4:7. doi: 10.1038/s41536-019-0066-7. eCollection 2019. 2019.
Cho IK, Yang B, Forest C, Qian L, Chan AWS
Amelioration of Huntington's disease phenotype in astrocytes derived fromiPSC-derived neural progenitor cells of Huntington's disease monkeys.
PLoS One. 2019 Mar 21;14(3):e0214156. doi: 10.1371/journal.pone.0214156.eCollection 2019. 2019.
Daadi MM
Generation of Neural Stem Cells from Induced Pluripotent Stem Cells.
Methods Mol Biol. 2019;1919:1-7. doi: 10.1007/978-1-4939-9007-8_1. 2019.
Daadi MM
Differentiation of Neural Stem Cells Derived from Induced Pluripotent Stem Cells into Dopaminergic Neurons.
Methods Mol Biol. 2019;1919:89-96. doi: 10.1007/978-1-4939-9007-8_7. 2019.
Recent News Articles
November 6, 2018
The Cells that Changed the World
September 11, 2018
A starring role for nonhuman primates in the stem cell story
May 16, 2018
Uw Researchers Identify Arterial Hemogenic Endothelial Cells That Can Function As Lymphoid Precursors
March 20, 2018
How human embryonic stem cells sparked a revolution
November 18, 2017
A decade after stem cell feat, research ramps up
September 6, 2017
Graduate student in Texas Biomed stem cell lab receives NIH training award
May 30, 2017
Stem cells yield nature’s blueprint for body’s vasculature
May 3, 2017
Scientists turn human induced pluripotent stem cells into lung cells
March 7, 2017
OHSU researchers discover a mechanism promoting neural stem cells
December 2, 2016
Pluripotent stem cells: the last 10 years
October 18, 2016
Scientists developing MRI-guided stem cell delivery method
October 12, 2016
Real-time, observable MRI delivery updated to improve stem cell therapy for Parkinson's
October 12, 2016
Real-time, observable MRI delivery updated to improve stem cell therapy for Parkinson's
September 29, 2016
Thomson honored for stem cell research legacy
June 7, 2016
Neural stem cell transplants promote Parkinson's recovery in non-human primates
January 8, 2015
Where has all the funding gone? Federal cuts threaten research at UW-Madison
September 5, 2014
Disease in a dish approach could aid Huntington's disease discovery
July 14, 2014
Wisconsin scientists find genetic recipe to turn stem cells to blood
June 11, 2014
Texas Biomed Regenerative Medicine Program Expands With Two New Research Scientists
June, 2014
Induced pluripotent stem cells as custom therapeutics for retinal repair: Progress and rationale
May 15, 2014
First test of pluripotent stem cell therapy in monkeys is successful
May 1, 2014
Stem Cell Therapy Regenerates Primate Heart Muscle
April 30, 2014
Stem cell therapy regenerates heart muscle damaged from heart attacks in primates
April 30, 2014
Scientists regenerate heart muscle in primates
March 14, 2013
Induced Pluripotent Stem Cell-Derived Neural Cells Survive and Mature in the Nonhuman Primate Brain
March 14, 2013
Transplanted brain cells in monkeys light up personalized therapy